Design-Space Exploration

Joost Hoozemans
Jeroen van Straten

2
TUDelft Challenge the future 1

VLIW Processor
16x32 16x32
Mult Mult
FYN F Y Y
» + >
Reg | IR
3 "o GE'ER » Load D$
32KB g 22 bk [] | Sore [**] 4-way
drect {—a) & |l 20 T 3 Uni 32KB
$r63=Ir . >
g = >
Fy
B 3 BrRegF[le A A A A A A A A A A
[j’“h e 8BR ALU ALU ALU ALU
n (1 bi
4 + - f ¥ 1' <+ 1' ¥ T
3
TU Delft Challenge the future 2

Design-Space Exploration

» Find the optimal configuration given a set of benchmarks
» "Optimal” : design choices

* Metrics: Performance, Energy, Area

3
TU Delft Challenge the future 3

There usually is no “optimal solution”, but it is important to balance your metrics; How
much are you investing in terms of area and power utilization, and how much
performance are you gaining?

Design-Space Exploration

f2(A) < f2(B) f2

%
TU DEIft Challenge the future 4

Goals

» Generate & evaluate design points (configurations)
» Using the tools and some scripting

« Prune design-space using common sense design choices

« Identify most promising candidates

- Pareto points

» Perform multi-objective optimization (Trade-off)
+ Highest performance

= Smallest area

» Discuss your findings in a report

3
TU Delft Challenge the future 5

Design-Space Exploration

» Find the optimal configuration given a set of benchmarks
» "Optimal” : design choices

* Metrics: Performance, Energy, Area

3
TU Delft Challenge the future 6

There usually is no “optimal solution”, but it is important to balance your metrics; How
much are you investing in terms of area and power utilization, and how much
performance are you gaining?

Design-Space Exploration

» Find the optimal configuration given a set of benchmarks
» "Optimal” : design choices
* Metrics: Performance, Energy, Area

e Platform: VEX simulator

3
TU Delft Challenge the future 7

There usually is no “optimal solution”, but it is important to balance your metrics; How
much are you investing in terms of area and power utilization, and how much
performance are you gaining?

VEX : VLIW Example

» Family of VLIW processors

» Parameters
= Issue width (max nr. of operations/cycle)
« Functional units (ALU, Multipliers)
= Clustering
- Number of registers

- Cache sizes

* Compiled simulator

- Generates a simulation of your core running a program

3
TU Delft Challenge the future 8

Issue width MUL MEM
16x32 16x32
Mult Mult
FYN F Y Y
»> —> + »
Reg |
I$ "o 6:"&2 » Load D$
32KB g (32bits) 1 | Sore [**] 4-way
direct » = $10=0 3 »| Unit 32KB
$r63=r : >
> = >
r
B 3 BrRegFlb A A A Yy A A A A\ A 4
A 8BR A || Aw || Aw || Aw
Unit (1 blo
+ L LXK S 31 1 ¥t
ALU
i3
TU Delft Challenge the future 9

| will add some more information about VLIWs and the VEX configuration parameters. As
you will understand, most of this information is somewhat simplified.

This is a diagram of the default VEX core, taken from the vex.pdf documentation. A more
simple diagram will follow.

The issue width determines how many operations the core can read from its instruction
cache and send to its units. Notice that a lot of complexity will be added when
increasing it. The instruction cache must become wider as it needs to load more
operations per cycle. The decoding logic will become larger. The register file needs to be
able to read and write more operands per cycle, as every operation can read 2 operands
and write back 1 result. This leads to a superlinear increase in complexity, so the cost of
the register file will increase by more than a factor of 2 when doubling the issue width!
Furthermore there are more connections needed to connect all the functional units.

C R % H.P. VEX toolchain: _/\

Paran c @ Processor Core
appl]catiod compiler and cycle- Description
accurate simulator

Parameters:

No. of clusters
Issue-width
No. of ALUs
No. of MULs
No. of MEMs
FU Latencies

d

l

Simulation Register file size
Statistics &—\
Parameters:
Execution cycles
Stall cycles

Executed operations
Total branches
Memory accesses
Total misses

3
TU Delft Challenge the future 10

This is the workflow. We will only use the VEX tools. You will need to evaluate
configuration parameters for some benchmark programs and choose what you think is
the best processor configuration.

10

%
TUDelft

H.P. VEX toolchain:

Paramn (e}
compiler and cycle-

accurate simulator

Executable

Assembler, Linker,
Memory initializer

Instruction and
data memories

d

Simulation
Statistics

Parameters:

Execution cycles
Stall cycles
Executed operations
Total branches
Memory accesses
Total misses

Instru
ction
Mem

—

-

Processor Core
Description

=

Parameters:

* No. of clusters

1 Issue-width

* No.of ALUs

' No.of MULs

* No. of MEMs

* FU Latencies

* Register file size

Optim

Processor Core

\ﬁ

ization

‘arameters:

Custom o

Synthesizable
VHDL

P
1 Register files

* Interrupt systems
* Exceptions

L

.

'

.

Size of memories
Pipelined/non-pipelined
Forward/non-forward

_/@

perations

VLIW Processor
Generation

=

Parameterized
Processor

ture

11

This is a more realistic workflow including a parametrized hardware implementation
(that can give more realistic area utilization). TUDelft has a VHDL implementation of the
VEX ISA. It is parametrized using most of the same configuration parameters as VEX.
Using the parameters found using the VEX tools, you wouldbe able to synthesize a
processor. However, this is too complex for the current lab.

11

Programs: Powerstone

» Simple benchmark programs

« Different application domains (embedded, image processing,
general-purpose)

3
TU Delft Challenge the future 12

12

Processor core description:
Machine configuration file

2 issue vex 1 cluster

» Example in workspace RES: IssueWidth 2
RES: Alu.© 2

RES: Memory.0 1
RES: Mpy.0 2

» REG: Resources (functional units) Rl e 3

DEL: AluR.0 ©
H H 1 Alu.

» DEL: Delays (pipeline) DEL: Crpbr .0 1
DEL: CmpGr.0 0
DEL: Select.0 ©

: DEL: Multiply.o 1

* REG: Number of Registers DEL: Load.0 1
DEL: LoadLr.0 2
DEL: Store.0 0
DEL: Pft.0 0
DEL: CpGrBr.0 1
DEL: CpBrGr.0 0
DEL: CpGrLr.0 1
DEL: CpLrGr.0 ©
DEL: Spill.o 0
DEL: Restore.0 1
DEL: RestorelLr.0 2

REG: $ro 64
REG: $bo 8

]
TU Delft Challenge the future 13

Please do not change the delays. The other values you may change. The number of
general purpose registers (Sr) is 64 at maximum.

13

Lab materials

eLab manual
- And this presentation — more slides with hints

*The HP VEX toolchain

Script to facilitate:
- Generation of machine configurations
- Area and energy estimation
- Build & run benchmarks

*Download link: on ASCI webpage

3
TU Delft Challenge the future 14

14

Lab guides

Jeroen van Straten
j.vanstraten-1@tudelft.nl

Joost Hoozemans
j.j-hoozemans@tudelft.nl

3
TU Delft Challenge the future 15

http://rvex.ewi.tudelft.nl

%
TUDelft

Challenge the future 16

16

Data
Cache

L

Pipeline

Instruction
Cache

L]

%
TUDelft

This is a very simple diagram of a scalar processor.

Challenge the future 17

17

Data
Cache
F D E1 E2 WB
Instruction
Cache
5
TU Delft Challenge the future 18

Let’s suppose it has a classic 5-stage pipeline just like our TUDelft rVEX processor. Its
pipeline stages are Fetch, Decode, Executel, Execute 2, and Writeback.

The Fetch stage reads the instruction from the instruction cache, the decode stage reads
the operands from the register file, the execute stages perform a calculation or data
cache access, and the write back stage writes the result of an operation to the register

file.

18

Data
Cache
F D ALU WB
Instruction
Cache
5
TU Delft Challenge the future 19

Every cycle, the processor can send 1 type of operation into the pipeline. This is either
an ALU type,

Data

A memory type,

Cache
MEM WB
Instruction
Cache
5
TU Delft Challenge the future 20

20

Data
Cache
F D MUL WB
Instruction
Cache
5
TU Delft Challenge the future 21

Or a multiplication type (I’'m skipping the Branch type here, as it is a fixed functional unit
type in VEX —there is alway 1 branch unit)

Data

Cache

ALU

F D | MEM] | wB
| MUL |
Instruction
Cache

5
TU Delft Challenge the future 22

Another way of depicting this. There are 3 functional units but because the rest of the
logic (F, D, WB) is scalar, the processor can only use 1 of these units at the same time.

Data
Cache

addr1=r2,r3
. ALU

add r4 = 15, 16 F D | | MEM] | ws
; MUL l

addr7 =18, 19 l

;dd ri0=r11,r12

mul r13 =r14, r15

Ld r20 = 0x1234

1

3
TU Delft Challenge the future 23

This processor needs 6 cycles to complete this example piece of code (not considering
latency). There are no dependencies.

23

Data

Cache
F D MEM WB
Instruction F D MUL WEB
Cache
F [l ALU WB
i |
['
5
TU Delft Challenge the future 24

Now let’s duplicate the rest of the logic so that the functional units can be used at the
same time. This processor is a VLIW. The number of functional units is still 3, but now we
have increased the issue width from 1 to 3. So here, the nr. of FUs = issue width. You can
see that, besides all other pipeline logic being duplicated, the register file now needs 6
read ports and 3 write ports. This is very expensive in terms of chip area.

24

Data

Cache
addr1=r2,r3
Ld r20 = 0x1234
mul r113 =r14, r15 F D MEM WB
add r4 = 15, 16
;dd r7=r8,r9
F [l ALU WB
i |
['

%
TUDelft

Challenge the future 25

As the functional units can now be used at the same time, the example piece of code
can now finish in 4 cycles. However, there is only 1 ALU so the additions need to be

performed sequentially. The MEM and MUL pipelines are idle during these last 3 cycles;

they are executing No-Operation instructions (the NOPs that are notorious for VLIW

processors).

25

Data
Cache
| MEM |
F D [ALD[] WB
| MUL |
[MEM |
Instruction
F
Cache D ALU[] WB
| MUL |
| MEM |
F [l ALU WB
| MUL |
5
TUDeIft Challenge the future 26

Instead of only duplicating the other pipeline logic, why not just duplicate everything
including the functional units?

Data
Cache
addr1=r2,r3
Ld r20 = 0x1234 | MEM |
mul r13 = r14, r15 F D [ALD] | WB
add r4 = 15, 16 | — |
addr7=r8, 19
addr1i0=r11,r12
" [MEM |
F D ALU[] WB
| MUL |
| MEM |
F [l ALU WB
| MUL |
5
TU Delft Challenge the future 27

This design would finish the example code in only 2 cycles. However, note that 6 out of 9
functional units will allways be idle. Also, the data cache needs 3 times the number of
access ports which will make it more expensive. Not every application will be able to
benefit from this.

Data
Cache
| MEM |
F D ALU WB
. \ MUL |
Instruction E o ALU WB
Cache
F [l ALU WB
5
TU Delft Challenge the future 28

This is a design that distributes the functional units over the pipelines, while still
allowing most operation types to be executed in parallel. To be complete, | have also
depicted the branch unit here to show that every pipeline has 2 units.

Data
Cache

addr1=r2,r3
Ld r20 = 0x1234 | MEM |
mulr1i3=r14, r15 F D ALU WB
add r4 = 15, 16
addr7=r8, 19
addr1i0=r11,r12
N \ MUL |

F D ALU WB

F [l ALU WB
5
TU Delft Challenge the future 29

The example code will run equally fast on this processor.

Intermezzo: VEX clusters

e A cluster is a section of a VLIW
processor that has its own register file
and resources

e Only cluster 0 can execute control
operations (branch, goto, call, etc.)

e multicluster != multicore

]
TUDelft

30

Intermezzo: VEX clusters

e 4-issue without clusters:

Instruction bundle

]

ALU: BR‘: ALU AL'U | ALU
HERRRRENEREREE

64 registers
8 read, 4 write per cycle ‘

|

]
TUDelft

Without clustering, the register file grows superlinear with the issue width of the core
(more precisely, the number of access ports)

31

Intermezzo: VEX clusters

e 4-issue divided into 2 clusters
- Smaller/faster register file

Instruction bundle

| I

' |
- ALU, BR | ALU,C «— ALY, C ALU

* W Jz LegisLer[sl | 3 .legis ers

4R, 2W per 4R, 2W per
| cycle |

]
TUDelft

When using clustering, the core is split into multiple parts that all have access to their
own section of the register file. Communication between the parts needs to be
performed explicitly, and there is a penalty involved! On the other side, the area savings
for the register file can be substantial, especially for large issue-width configurations.

32

Intermezzo: VEX

e ci at the start of the line denotes cluster

e So does the first number in the register
names

c0 sub $r0.8
cO0=cl mov 5r0.3

$r0.13, $r0.15
$rl.5

c0 add $r0.15
c0 shl $r0.14
cl add $rl1.2

$r0.15, 32
$r0.14, $r0.8
$rl.6, ~0x3f

]
TUDelft

This is an example of intercluster communication

