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p-VEX

The p-VEX can work as...
- - One 8-way datapath,

———— - Two independent 4-way datapaths,
- Four independent 2-way datapaths, or
- One 4-way + two 2-way datapaths

Overview
Observation - Modern embedded workloads are becoming increasingly dynamic (intensity, characteristics, criticality)
Problem - Dynamic workloads do not always map well to fixed hardware
Vision - A dynamic computing platform that continuously optimizes its hardware to all running tasks
Realization

- Dynamic assignment of caches and explicitly parallel datapaths to different threads

Runtime reconfiguration

p-VEX reconfiguration is not FPGA reconfiguration.
It is all just control signals to multiplexers. Therefore, it
only takes around five cycles to reconfigure, and the
p-VEX is fully implementable using ASIC technology.
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Application Examples

Robotics & Automotive
Typical requirements

- Low-latency event handling

- Image processing
- Mixed criticality

p-VEX advantages

- Low interrupt latency

- Performance isolation

- Improved schedulability

- Single architecture suitable for both DSP and
general-purpose workloads simplifies programming

Space
Typical requirements

- High-radiation environment
- Low power consumption
- Signal processing

p-VEX advantages
- Triplication for critical sections

- Datapaths with permanent
faults can be disabled

- Low power by gating datapaths
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Reconfiguration
Reconfiguration
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Education

Courses/labs
ET4078 - Modern Computer Architectures

ET4370 - Reconfigurable Computing Design

Four PhD. dissertations, two current candidates
Example topic:
- Runtime Adaptable VLIW Processors............ Fakhar Anjam

Fifteen MSc. theses, five current students

Example topics:

Koray Yanik
Muneeb Yousaf
Jens Johansen

- Streaming Caches........... ... ... .. ...,
-FreeRTOS ... ... o i
- Memory management . .................ccoo....

Two completed BSc. honours tracks, two in progress
Example topic:

- Floating Point .. ........................ ..., Matti Dreef

Six exchange students/staftf members
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Triplication for protected sections

Performance Low power

Collaborations

European-Funded projects
2008 - 2013: ERA
- Multi-core Simulator
- Demonstrator development
- IBM Research Lab, Isreal: . ....... - p-VEX GCC port
- Evidence, ITtaly: . ................ - Exchange
- Linux driver development
2014 - 2017: ALMARVI
- Philips Healthcare, Netherlands: .. - 2 Msc. projects
- Tampere University, Finland: . . . .. - Demonstrator development
- Students exchanges
- CAMEA, Czech Republic: . ....... - Demonstrator development

- Imperial College London, UK: . . . .. - Master’s thesis topics
- Polytechnic Uni. of Turin, Italy: . .. - Fault tolerance

- Tallinn University, Estonia: . . ... .. - Tool integration
-UFRGS, Brazil: . ................ - Several exchanges

- University of Bristol, UK: . ....... - Hardware integration

Computing Concepts

Traditional Platforms: Homogeneous Single-/Multicore

All programs map to the same core type
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ILP Drawback: mismatches cause
reduced power efficiency!

Single core:
Multitasking via time-sharing
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Current State of the Art: Heterogeneous Multicores

- Small and Large cores in a system
- Heavy programs on a large core: high performance
- Light programs on a small core: power savings
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Drawbacks:

Limited number core types

Still mismatches Migration penalty

Unused ILP
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Migration penalty when active tasks change
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Our Approach: Dynamic Reconfiguration

- Large VLIW core can behave as multiple small cores
- Multiple contexts stored in hardware per core:
used for fast context/configuration switching
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Core can adapt to changes in the active task set
almost instantaneously

Contact information:

Project Leader: Stephan Wong (]J.S.S.M.Wong@tudelft.nl)
Project Website: http://rvex.ewi.tudelft.nl/
Lab Website: http://ce.ewi.tudelft.nl
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