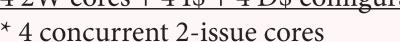

Computer Engineering Laboratory Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology, Netherlands



Design of a parameterized and dynamically reconfigurable processor:

- * parameterization to allow adaptation to *changing functionalities, program requirements, operating environment*
- * run-time adaptation, i.e., during system operation and/or program execution
- * current design exchanges between ILP (large core with many parallel units) and TLP (several cores in parallel) * homegeneous/heterogeneous multi-/many-core within a SINGLE design

* power gating can be supported to save power (see 2nd figure)

- * 4 I-caches
- * 4 D-caches

= low ILP programs & high TLP

- * 1 4-issue & 1 2-issue core in parallel
- * 2 I-caches (different sizes)
- * 2 D-caches (different sizes)
- = mix of programs with diff. ILPs
- *= save power by shutting down a core*

- * 1 single 8-issue core
- * 1 I-cache (comprised of smaller ones)
- * 1 D-cache (compr. of smaller ones)

= run single program with high ILP

<u>Generic Binary (presented at DATE 2013):</u>

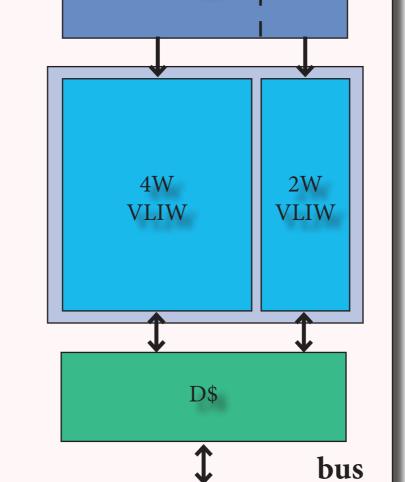
- * Compile for 8-issue and address them as 2-issue bundles
- * Fix dependencies & skip NOPs bundles
- * Small change in "update PC" & "skip NOPs" hardware
- * Interruptable code (can restart at exactly the same position)
- * Dynamic issue-width switching by:
 - programmer, compiler, hardware scheduler, and/or OS
- * Updated result: on average 5% performance loss

"Recent" Developments: (published @)

* 2 I-caches (comprised of smaller ones)

* 2 D-caches (compr. of smaller ones)

= run 2 programs with medium ILP


- * Dynamically Reconfigurable Register File (@ DATE 2010)
- * Multi-ported Register File using BRAMs (@ FPT 2010)
- * ρ–VEX 2.0 & Extensions (2 papers @ WRC 2010):
 - pipelining, forwarding, interrupts, exceptions
- * Run-time Task Migration (@ ARC 2012)
- * Dyn. Issue-width Reconfiguration (@ FPT 2010 & DATE 2011)
- * Dynamic Issue-width with 1st level I-cache (@SAMOS 2012)
- * Dynamic Fault-Tolerance Support (@ ARC 2013)

Current Demo Explained

I\$

Current Work: (to be published)

- * Heterogeneous multi-core
- * Design implemented on ML-605
- * Dynamic loading of program via host computer
- * Single application in generic binary format in I\$
- * Both 2W and 4W cores run the same code
- * When interrupted, execution is moved to the other core
- * Context switching (or via RF sharing)
- * Output written to frame buffer for display

GRLIB-based SoC close to be finalized * Run-time reconfigurable design under test * Linux support under development * Software-based fault-tolerance under dev.

Other interesting notes:

* Hands-on tutorial available

* Complete lab developed and available * Work will be released under GPL

Contact information:

Project Leader: Stephan Wong (J.S.S.M.Wong@tudelft.nl) Project Website: http://rvex.ewi.tudelft.nl/ Lab Website: http://ce.ewi.tudelft.nl

