
Liquid Computing
Stephan Wong

Computer Engineering Lab
Faculty of EEMCS, TU Delft

Analogy: Package Delivery vs. Processor Design

From: "Transistor Count and Moore's
Law - 2011" by Wgsimon

Use the increasing
amount of “transistors”
to build better package
delivery systems:
• Larger packages
• Faster delivery
• More energy-efficient

Around 2005: Frequency & Power leveling off

From: www.tomshardware.com

• Dennard Scaling (power density remains constant) ended 2005-2007
• However, Moore’s Law (#transistors doubles every ~2 yrs) continued
• What was the effect??

Homogeneous Computing

2000 2010

Terminology (after 2005):
• Dual-core
• Quad-core
• Six-core
• 8-core
• 10-core
• 16-core
• “Just” more the same core

2005

Analogy: Use the same box (=processor)
to transport various sizes of packages
(=applications)

Heterogeneous Computing

• Example: in 2011 ARM Introduces big.LITTLE

Analogy: Use the different boxes
(=heterogeneous processors) to transport
various sizes of packages (=applications)

From: www.arm.com

Now What?

• How can we even more efficiently use the
transistors, minimize waste, and reduce
energy consumption?

• Liquid Computing

• First two intermezzo’s before I give definition

Intermezzo: 3D Printing

From: http://www.makerbot.com/uses/for-professionals

• Continuing analogy build the best container for each package

• This means: build the best processor for your application
• Field-Programmable Gate Arrays (FPGAs) is now best candidate

Intermezzo: IKEA

From: www.ikea.com

• Continuing analogy: reconfigure a kitchen drawer (=reconfigurable
processor) for different kitchen utensils (=applications)

• Parameterized reconfigurable processors

• (NOTE: One single design and not necessarily using FPGAs)

Liquid Computing: A definition

• Run-time adaptivity of computing systems
(processors, memories, network-on-chips) to
meet changing requirements of applications
being executed in different environments

• Analogy: Versatile and flexible package delivery system that can cope with any type and size
of packages to be transported in all (weather) conditions at any time

• The predecessor to LC was the ERA project

Embedded Reconfigurable Architectures

Partners

Technische

Universiteit Delft
(TUD) – NL (Coordinator)

Industrial Systems

Institute
(ISI) – GR

Universita' degli Studi

di Siena
(UNISI) – IT

Chalmers University
(CHALMERS) – SE

University of

Edinburgh
(UEDIN) – UK

Evidence
(EVI) – IT

STMICRO
(STMICRO) – IT

IBM
(IBM) – IL

Universidade do Rio

Grande do Sul
(UFRGS) – BR

Uppsala University
(UU) – SE

Contract:

INFSO-ICT-249059

EU Funding:

2.8 MEuro

Start - End:

01-2010 – 03-2013

Dynamic adaptation
to software
requirements &
operating environment

Dynamic adaptation
in performance, power
/ energy, and resources

Dynamic reconfiguration
of processor cores, caches,
and NoCs

Programs:
• General-purpose programs (think: desktop, office)
• Domain-specific programs (think: embedded)
• Different characteristics (e.g., parallelism)

Compiler:
• Targets fixed processor
• Match characteristics with processor capabilities

Will programs run efficiently on the processor in most cases?
• for general-purpose computing: YES
• for domain-specific computing: NO
Why not?
• fixed nature of processor - not tuned for applications

Single processor:
• General-purpose
• Fixed (parallel) functionality
• Complex hardware to fully utilize parallel

hardware (= power hungry)

Mainstream processors

Programs:
• General-purpose programs (think: desktop, office)
• Domain-specific programs (think: embedded)
• Different characteristics (e.g., parallelism)

Compiler:
• Targets reconfigurable & parameterized

processor
• Match characteristics with processor capabilities

Many datapaths:
• Can be combined to form different processors
• Reconfigurable & parameterized processor(s)
• Adaptive functionality
• Adaptive behavior based on resources, power

budget, and target performance (self-
optimization)

What do we do in the ERA project?
• Parameterization of processor designs
• Match processor designs to the applications (through parameters)
• Perform switching of processor cores dynamically (at run-time)
• Self-optimize based on available resources and power budget

*: moved the complex
instruction scheduling
to the compiler (=
VLIW processor
concept)

Embedded Reconf. Arch.

An Example (1/3)

A B C

Program A wants to run on the ERA platform

Instantiate a core capable of running program A

Run program A on the new core

Program B wants to run on the ERA platform

Instantiate a core capable of running program B

Run program B on the new core

Program C wants to run on the ERA platform

Instantiate a core capable of running program C

Run program C on the new core

An Example (2/3)

A B C

Program A finishes

The related core is gated off to save power

Program B utilizes more resources to improve
performance

Program C finishes

The related core is gated off to save power

An Example (3/3)

B D

Program D wants to run on the ERA platform

Program D’s preferred core size is not available

Reduce the core size executing program B

Instantiate a core capable of running program D

Run program D on the new core

Instantiate a non-preferred core on the remaining
resources and execute program D on that core; OR

How about the network-on-chip (NoC) and memory
hierarchy?

We apply the same concepts illustrated by the processor
example to the NoC and memories!!

TLP vs. ILP

• Leverage reconfigurable multi-core to adapt resources from
TLP to ILP or fault-tolerance

• Key ideas:
• Add direct pair-wise fine-grain communication support to

interconnect and ISA
• Compiler manages ILP through advanced clustering

techniques

Energy/Performance Trade-Offs

• Higher ILP applications favor wider issue cores

• Higher TLP favors “more & smaller” cores

Processor-Memory Reconfiguration (1)

0
0,5

1

1,5

2
2,5

S
p

e
e

d
u

p

0
20
40
60
80

100
120

E
n

e
rg

y
 (

m
J

)

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

b
a

s
ic

m
a

th

D
-a

d
p

c
m

E
-r

ijn
d

a
e

l

b
a

s
ic

m
a

th

D
-a

d
p

c
m

E
-r

ijn
d

a
e

l

b
a

s
ic

m
a

th

D
-a

d
p

c
m

E
-r

ijn
d

a
e

l

b
a

s
ic

m
a

th

D
-a

d
p

c
m

E
-r

ijn
d

a
e

l

1W8KB16B 1W16KB16B 1W8KB32B 2W8KB16B

E
D

P

2-issue 4-issue 8-issue

• Different processor configurations require different I-cache

configurations for different applications

• Therefore, we configure the core and memory according to application

requirements

Normalized to 2-issue

Processor-Memory Reconfiguration (2)

Core:W=8 W=4 W=2
50

100

150

200

250

300

350

4MB 64KB4MB 64KB 4MB 64KB

5 configurations: same delay

Core W: 8
LLC: 256KB

Core W: 4
LLC: 512KB

Core W: 2
LLC: 2MB

• Performance varying Core Parallelism and LLC Size

parser

Core:W=8 W=4 W=2

Processor-Memory Reconfiguration (3)

50

100

150

200

250

300

350
4 configurations: same EDP

EDP

4MB 64KB4MB 64KB 4MB 64KB

parser
• EDP varying Core Parallelism and LLC Size

Reconfigurable NoCs

• Different traffic characteristics require different dimensioning of the NoC

• Even the same application can have phases generating different traffic

MPSoC: Default Configuration

EP

8-issue

I
CACHE

ROUTER

500MHz

23,47mW @ 1000MHz

32

256

NI

128

D
CACHE

MMI

ROUTER

ROUTER ROUTER

EP

EPEP

256

128
128

128

128

128

128128

32

MPSoC: Reconfiguring processor, memory, & NoC

2-issue

I
CACHE

ROUTER

3.89mW @ 300MHz

32

64

NI

64

D
CACHE

MMI

ROUTER

ROUTER ROUTER

PE

PEPE

64

64
64

64

64

6464

32

7mW@300MHz
8W16K256B

7.78mW
64

11.94mW@300MHz

• Reconfiguring Processor:
• Issue = 2-issue

• Frequency = 300MHz

• Reconfiguring iCache:
• Cache size = 16KB

• Data width = 64b

• Frequency = 300MHz

• Reconfiguring NoC:
• Flit Width = 64b

• Frequency = 300MHz

Total Power = 30.61mW

Fully Adaptable System

87.95

57.75

41.84

25.1

11.94

28.45

17.07

14.52

10.6

7

24.4

14.64

11.74

7.9

3.89

51.91

31.15

25.95

15.75

7.78

0

20

40

60

80

100

120

140

160

180

200

NoC 256bits*500MHz NoC 256bits*300MHz NoC 128bits*500MHz NoC 128bits*300MHz NoC 64bits*300MHz

M
P

S
o

C
 P

o
w

er
 (

m
W

)

ρ-VEX Memory Router Link

Recent Developments for the rVEX
Dynamically Reconfigurable Register File for ρ-VEX:
– Implemented dynamically reconfigurable register file for ρ-VEX [presented at

DATE 2010]
– Registers can be configured as per requirement of application at runtime
– Extra area (slices) can be saved
– Registers are configured in a chunk of 8-registers (924 slices)
– Utilized the Xilinx EAPR methodology

Recent Developments for the rVEX
A Shared Reconfigurable VLIW Multiprocessor System:
– Implemented a dual-core processor system sharing the resources [presented at

RAW 2010]
– Based on ρ-VEX (v1.0) on Virtex-II Pro
– Execute unit and register file consume 34% and 58% resources
– Two contributions:

• Execute unit is shared between two cores, and
• Register file is implemented using BRAMs (New-unshared and New-shared)

28923

24212

12427

7759

0

5000

10000

15000

20000

25000

30000

35000

Dual-Processor System

S
li

c
e
s

Unshared Shared New-Unshared New-Shared

Recent Developments for the rVEX
rVEX V1.0 [presented at FPT 2008]

Dynamically Reconfigurable Register File for ρ-VEX [presented at DATE 2010]

Multi-ported register file design using BRAMs [presented at FPT 2010]

rVEX V2.0 & extensions: [presented at WRC 2012 (2 papers)]

– Paper 1: Pipelined, forwarding logic, Paper 2: Support for traps (interrupts, exceptions)

Run-time task migration [presented at ARC 2012]

Dynamic issue-width reconfiguration: [presented at FPT 2010, DATE 2011]

– Dynamic adaptation of issue slots

Dynamic issue-width and 1st level I-cache reconfiguration: [pres. at SAMOS 2012]

– Simultaneous reconfiguration of core issue width and I-cache parameters

Binary compatibility for dynamic issue-width adaptivity [presented at DATE 2013]

Dynamic support for fault-tolerance [presented at ARC 2013]

Recent Developments for the rVEX
Binary compatibility for dynamic issue-width adaptivity:
• Definition of the “generic binary” [presented at DATE 2013]

• Approach:

• Compile for 8-issue and address them as 2-issue bundles

• Fix false dependencies, skip NOPs-only bundles

• Simple hardware change in “update PC” & “skip NOPs”
• Advantages (over code versioning):

• Interruptability

• Dynamic switching of issue
width (controlled by application
designer, compiler, hardware
scheduler, and/or OS
scheduler)

• Disadvantage performance loss
(measured: avg. 30%, projected:
10%)

• NEW RESULTS: avg. 5%

Recent Developments for the rVEX
Dynamic support for fault-tolerance (presented at ARC 2013):

• [presented at ARC 2013]

• Parity bits for Imem, Dmem, and register file

• TMR for all FFs within design (targeted both FPGA and ASIC (not shown))

0

5000

10000

15000

20000

25000

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

2-issue 4-issue 8-issue

S
li

c
e
 R

e
g

is
te

rs
 a

n
d

 L
U

T
s

0

2

4

6

8

10

12

14

C
ri

ti
c
a
l

p
a
th

 d
e
la

y
 (

n
s
)

Slice Registers Slice LUTs Critical path delay

0

2

4

6

8

10

12

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

2-issue 4-issue 8-issue

D
y
n

a
m

ic
 p

o
w

e
r

(m
W

/M
H

z
)

• Similar critical path for designs
• Similar resource utilization for designs (unused

BRAM bits & LUTs)
• Dynamic power consumption (assuming 10%

switching activity)

D1 – Base non fault-tolerant design

D2 – Permanently enabled fault-tolerant design

D3 – Run-time configurable fault-tolerant design with

the fault tolerance enabled

D4 – Run-time configurable fault-tolerant design with

the fault tolerance disabled

Embedded Reconfigurable Architectures

Partners

Technische

Universiteit Delft
(TUD) – NL (Coordinator)

Industrial Systems

Institute
(ISI) – GR

Universita' degli Studi

di Siena
(UNISI) – IT

Chalmers University
(CHALMERS) – SE

University of

Edinburgh
(UEDIN) – UK

Evidence
(EVI) – IT

STMICRO
(STMICRO) – IT

IBM
(IBM) – IL

Universidade do Rio

Grande do Sul
(UFRGS) – BR

Uppsala University
(UU) – SE

Contract:

INFSO-ICT-249059

EU Funding:

2.8 MEuro

Start - End:

01-2010 – 03-2013

Dynamic adaptation
to software requirements &
operating environment

Dynamic adaptation
in performance, power /
energy, and resources

Dynamic reconfiguration
of processor cores, caches,
and NoCs

Achievements at end of project:
• Fully functional design of the ρVEX (v2.0)* processor:

1. Tested on many FPGA chips (Xilinx Virtex4-5-6, Altera Stratix)
2. Instance on Virtex-6 running at 150 MHz

• 3 fully functional platforms:
1. Operating System (OS) controlling the ρVEX cores (many-core)
2. Stand-alone ρVEX with adaptive memory systems (multi-core)
3. Reconfigurable NoC with several ρVEX cores

• 2 cycle-accurate simulators:
1. VEX simulator from HP (open-source)
2. xSTsim simulator from STMicro (binary)

• 2 fully functional toolchains:
1. HP compiler based on Multiflow (binary)
2. GCC (open-source)

Release in:
V2.0 – July 2013

V2.1 – September 2013
V3.0 – November 2014

(dynamically load programs)

NOW:
• Lab (incl. manual)
• Hands-on tutorial
• Linux OS on ρVEX

• LLVM port for ρVEX
• Open64 port for ρVEX

• CoSy port for ρVEX

*: developed in Delft

Current team and beyond (March 2015)
PhD students:

1. Porting Linux (v2.0)

2. Scheduling and compiler algorithms (finishing)

3. Run-time task scheduling (1 year)

4. Cache coherence (1 year)

MSc students:

1. Multiple context support & MMU design

2. Hardware/Software Fault-Tolerance (2x)

3. Compiler support for reconfiguration

4. Compilation support for Linux without virtual memory

5. (Just started)

Active collaborations:

1. University of Torino, Italy (visiting professor & visiting MSc student)

2. UFRGS, Brazil (2 visiting professors & 2 visiting PhD students)

3. UFV, Brazil (1-year sabbatical of professor)

4. Ruhr University Bochum, Germany (uses our processor design)

5. TU Darmstadt, Germany (uses our processor design)

6. Brno University of Technology, Czech Republic (compiler work using LLVM)

Others:

• At least 10 signed licenses to use V2.x of rVEX release.

• Platform now being used by two courses in Computer Engineering MSc Programme.

Analogy cont’d: An Army of Delivery Drones

Liquid Computing:
• Run-time adaptivity
• Efficient computing
• Fault-tolerance
• Efficient HW utilization
• Energy-efficient computing
• Many exciting ideas to

explore!!

Like having an army of
delivery drones of all sizes
flowing through our campus!

Liquid Computing in Space

• Harsh environment requires run-time adaptability,
e.g., fault-tolerance

• Certain control systems need responsiveness

We are working to bring Liquid Computing into SPACE!

Delfi-C3 from TU Delft

